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a b s t r a c t

The extreme learning machine (ELM) has attracted increasing attention recently with its successful
applications in classification and regression. In this paper, we investigate the generalization performance
of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations
of activation functions in ELM. The generalization analysis is established for the ELM-based ranking
(ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark
datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods.
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1. Introduction

The extreme learning machine (ELM) proposed by Huang, Zhu,
and Siew (2006) can be considered as a learning system like
feedforward neural networks (FNNs). Compared with FNN, the
main feature of ELM is that the hidden node parameters are
independent not only with the training data but also with each
other, and can be generated before seeing the training data (Huang,
Wang, & Lan, 2011). Recently, extensive studies have been paid
on the ELM-like learning system through empirical evaluations
(Bueno-Crespoa, García-Laencinab, & Sancho-Gómez, 2013; Cao,
Liu, & Park, 2013; Huang, Zhou, Ding, & Zhang, 2012; Wang, Cao, &
Yuan, 2011) and theoretical analysis (Huang, Ding, & Zhou, 2010;
Liu, Lin, & Xu, 2013; Zhang, Lan, Huang, & Xu, 2012).

The previous studies of ELM usually focus on the classification
and regression problems. The natural question is: Is the ELM-like
learning system suitable for other learning tasks? To the best of
our knowledge, the generalization analysis for ranking under the
ELM framework remains untouched. In this paper, we consider the
generalization performance of ELM-based least square ranking.

The ranking problem has gained increasing attention in ma-
chine learning with the fast development of ranking techniques on
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searching engines and information retrieval. From different per-
spectives, many ranking algorithms have been proposed including
RankSVM (Herbrich, Graepel, & Obermayer, 2000; Joachims, 2002),
RankNet (Burges, Ragno, & Le, 2007; Burges et al., 2005), Rank-
Boost (Freund, Iyer, Schapire, & Singer, 2003), andMPRank (Cortes,
Mohri, & Rastogi, 2007). The generalization analysis for the rank-
ing problem has been established via stability analysis (Agarwal &
Niyogi, 2009; Cossock & Zhang, 2008), uniform convergence esti-
mate based on the capacity of hypothesis spaces (Clemencon, Lu-
ogosi, & Vayatis, 2008; Rejchel, 2012; Rudin, 2009; Zhang & Cao,
2012), and approximation estimate based on the operator approx-
imation (Chen, 2012; Chen et al., 2013).

In this paper, inspired by the theoretical analysis in Liu et al.
(2013), we propose an ELM-based ranking (ELMRank) algorithm
to search a ranking function in a coefficient-based regularization
scheme. The representer theoremand generalization bound are es-
tablished for the proposed algorithm. Because the random node
function in ELM has flexible forms, we use the uniform conver-
gence analysis based on covering numbers to establish the gener-
alization bounds.

Now, we highlight some features of this paper.
• A new ranking algorithm, called ELMRank, is proposed based

on the hypothesis space of ELM. The representer theorem is
provided to show that ELMRank also inherits the computation
feasibility of ELM.

• Generalization analysis of ELMRank is established in terms of
the capacity of the hypothesis spaces. This extends the previous
analysis for regression in Liu et al. (2013) to the ranking settings.
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• Experiments on public datasets demonstrate the competitive
ranking prediction performance of ELMRank.

The remainder of this paper is organized as follows. In Section 2,
we introduce the ELM-based learning system for least square
ranking. The representer theorem is also proved in this section.
The generalization analysis is established in Section 3 and the
experimental evaluations are given in Section 4. Finally, a brief
conclusion is presented in Section 5.

2. ELM-based ranking

Now we recall some basic concepts of the ranking problem
(Agarwal & Niyogi, 2009). Let X ∈ Rd be a compact metric space
and Y = [0,M] for some M > 0. A probability distribution ρ,
defined on Z := X × Y, describes the relation between the input
x ∈ X and the output y ∈ Y. x is ranked higher than x′ if y > y′, and
lower than x′ if y < y′. In particular, there is no ranking preference
between x and x′ if y = y′.

In this paper, the least square ranking loss

ℓ(f , z, z ′) := ℓ(f , (x, y), (x′, y′)) = (y − y′
− (f (x) − f (x′)))2

is used to describe the difference between y − y′ and f (x) − f (x′).
The expected risk (also called the generalization error) of a ranking
function f is defined as

E(f ) =


Z


Z

(y − y′
− (f (x) − f (x′)))2dρ(x, y)dρ(x′, y′).

Given samples z := {zi}mi=1 = {(xi, yi)}mi=1 ∈ Zm independently
drawn according to ρ, the empirical ranking risk is defined as

Ez(f ) =
2

m(m − 1)

m−1
i=1

m
j=i+1

(yi − yj − (f (xi) − f (xj)))2.

The least square ranking aims at finding a function f : X → R
such that E(f ) is as small as possible.

Following the kernel methods for classification and regression,
many ranking algorithms are proposed under a Tikhonov regular-
ization scheme associated with a Mercer kernel (Agarwal, Dugar,
& Sengupt, 2010; Agarwal & Niyogi, 2009; Chen, 2012; Chen et al.,
2013). The reproducing kernel Hilbert space (RKHS) HK associated
with the kernel K is defined to be the closure of the linear span
of the set of functions {K(x, ·) : x ∈ X} with the inner prod-
uct ⟨ ·, · ⟩K given by ⟨K(x, ·), K(x′, ·)⟩K = K(x, x′). Then, ∥f ∥2

K =m
i,j=1 βiβjK(xi, xj) for f =

m
i=1 βiK(xi, ·) ∈ HK .

Agarwal and Niyogi (2009) proposed the following regularized
ranking algorithm:

f̃z,γ = arg min
f∈HK


Ez(f ) + γ ∥f ∥2

K


, (1)

where γ > 0 is the regularization parameter.
Let λ =

m−1
2m γ and

Ẽz(f ) =
1
m2

m
i,j=1

(yi − yj − (f (xi) − f (xj)))2.

The regularized scheme (1) can be transformed as below:

f̃z,λ = arg min
f∈HK


Ẽz(f ) + λ∥f ∥2

K


. (2)

It is worth noticing that the minimizer (2) admits a representa-
tion of the form (Chen, 2012)

f̃z,λ =

m
i=1

β̃z,iKxi , β̃z,i ∈ R.
Hence, the kernel-based regularized ranking focuses on searching
the coefficients in a data dependent hypothesis space.

Inspired by the computation feasibility of ELM (Huang et al.,
2012, 2006; Liu et al., 2013), in this paperwe consider a regularized
ranking scheme in an ELM-based hypothesis space. Let φ(αi, ·) :

Rd
→ R be the random node function for the hidden parameter

αi ∈ Rl and n ∈ N be the number of hidden nodes. The ELM-based
hypothesis space is defined as

Mn =


n

i=1

βiφ(αi, ·) : αi ∈ Rl, β = (β1, . . . , βn)
T

∈ Rn


,

where α = (α1, . . . , αn)
T

∈ Rn×l are randomly drawn from a
uniform distribution µ in Rn×l. Here, Mn can be considered as a
hypothesis space of three layer FNNs with n hidden nodes and one
output node whose hidden connection is α and output connection
is β (Huang et al., 2010; Liu et al., 2013). That is to say {φ(αi, ·)}

n
i=1

map the first layer to the hidden layer and
n

i=1 βiφ(αi, ·) forms
the output layer by the output weights β . In ELM, the sigmoid and
Gaussian functions are two popular random node functions.

Form training samples z = {(xi, yi)}mi=1 ∈ Zm, the output of the
ELM-based ranking (ELMRank) with n hidden nodes is

fz,λ = arg min
f∈Mn


Ẽz(f ) + λ∥f ∥2

ℓ2


, (3)

where

∥f ∥2
ℓ2

= inf


n

i=1

β2
i : f =

n
i=1

βiφ(αi, ·)


.

Denote fz,λ =
n

i=1 βz,iφ(αi, ·). From (3), we know that the
output weights βz = (βz,1, . . . , βz,n)

T can be determined by

βz = arg min
β∈Rn


1
m2

m
j,k=1


yj − yk −


n

i=1

βiφ(αi, xj)

−

n
i=1

βiφ(αi, xk)

2

+ λ

n
i=1

β2
i


. (4)

Compared with the kernel-based regularized ranking, there are
twokey differences for ELMRank: one is that the parameterα of the
hidden node is independent of the samples z; the other is that φ is
the activation function or its composition in the FNN framework.

Recently, ELM for learning to rank has been well discussed
for relevance ranking (Zong & Huang, 2013). Although our paper
is closely related with Zong and Huang (2013), there are two
features for our analysis and applications: In theory, we establish
the generalization bound of ELMRank which fills the gap on
generalization analysis of ranking under the ELM framework;
In applications, we focus on learning a score function for the
recommendation task and drug discovery, while Zong and Huang
(2013) consider the document retrieval via linear ranking models.

Let H be the hidden layer output m × n matrix [φ(αi, xj)]
and let H i be the m × n matrix [at ]nt=1, where at = (φ(αt , xi),
. . . , φ(αt , xi))T ∈ Rm. Let Y = (yi)mi=1 = (y1, . . . , ym)T be the
target vector, Y i

= (yi, . . . , yi)T , and let Im be the m-order unit
matrix. Denote

A =
2
m

HTH + λIm −
1
m2

m
i=1

(H i)TH −
1
m2

m
i=1

HTH i (5)

and

B =
2
m

HTY −
1
m2

m
i=1

(H i)TY −
1
m2

m
i=1

HTY i. (6)
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Now we present the following representer theorem.

Theorem 1. The minimizer fz,λ in (3) can be represented as

fz,λ(x) =

n
i=1

βz,iφ(αi, x),

whereβz = (βz,1, . . . , βz,n)
T

∈ Rn is the unique solution of the linear
system

Aβ = B. (7)

Proof. Note that

Ẽz(f ) + λ∥f ∥2
ℓ2

=
2
m

m
i=1

(yi − f (xi))2

−
2
m2

m
i,j=1

(yi − f (xi))(yj − f (xj)) + λ∥f ∥2
ℓ2

=
2
m

∥Hβ − Y∥
2
2 −

2
m2

m
i=1

(Y i
− H iβ)T (Y − Hβ) + λβTβ.

Then

∂(Ẽz(f ) + λ∥f ∥2
ℓ2

)

∂β

=
4
m


HTHβ − HTY


−

2
m2

m
i=1

(H i)THβ −
2
m2

m
i=1

HTH iβ

+
2
m2

m
i=1

(H i)TY +
2
m2

m
i=1

HTY i
+ 2λβ.

Setting
∂(Ẽz(f )+λ∥f ∥2

ℓ2
)

∂β
= 0, we get the desired result.

Theorem 1 tells us that the ELMRank can be implemented by
solving the linear system (7). To improve the stability of ELMRank,
we have

β =


ATA +

In
C

−1

ATB, (8)

where C is a ridge regularization parameter.

3. Generalization analysis

In this section, we will investigate the generalization perfor-
mance of ELMRank (3). Note that EzEz(f ) =

m
m−1EzẼz(f ) = E(f ). In

the following, wewill establish the upper bounds of the excess risk
EzE(fz,λ) − E(f ∗), where f ∗ is the minimizer of E(f ) over the mea-
surable function space. Without loss of generality, we assume that
∥f ∗

∥∞ ≤ M . Some discussions for the optimal ranking function f ∗

can be found in the literature (Chen, 2012; Chen et al., 2013; Hu,
Fan, Wu, & Zhou, 2013).

In learning theory, the excess generalization error is usually
decomposed into the sample error and approximation error. From
the definition of fz,λ, we can get the following error decomposition.

Proposition 1. For any z ∈ Zm, there holds

Ez(E(fz,λ) − E(f ∗))

≤ Ez

E(fz,λ) − E(f ∗) − (Ez(fz,λ) − Ez(f ∗))


+ Ez


Ez(fz,λ) − Ez(f ∗) + λ∥fz,λ∥2

ℓ2


:= EzS1 + EzS2.
Here, we call EzS1 and EzS2 as the sample error and the
approximation error respectively. Because S1 = E(fz,λ) − E(f ∗) −

(Ez(fz,λ) − Ez(f ∗)) is dependent on the random samples z, we
need to measure the capacity of the hypothesis space to establish
the upper bound of the sample error. In this paper, the covering
number is introduced to measure the capacity of the hypothesis
space. In fact, the covering number has been well studied in the
literature (Chen, Wu, Ying, & Zhou, 2004; Cucker & Smale, 2002;
Cucker & Zhou, 2007; Zhou, 2002, 2003).

Definition 1. For ϵ > 0, the covering number N (H, η) is defined
to be the smallest integer l ∈ N such that there exist l disks in C(X)
with radius η and centers in H covering the set H .

For given R > 0, we define a class of functions as

BR =


f ∈ Mn : ∥f ∥2

ℓ2
≤ R2


. (9)

Cucker and Smale (2002) present the following bound for the
covering number of BR (also see Liu et al., 2013).

Lemma 1. For any R > 0 and η > 0, there holds

logN (BR, η) ≤ n log
4R

η


.

The McDiarmid inequality is introduced to establish the rela-
tionship between the expected risk and the empirical risk.

Lemma 2. Let {xi}mi=1 be independent random variables taking values
in a set A and let {bi}mi=1 be positive constants. Assume that ϕ :

Am
→ R satisfies

sup
x1,...,xm,x̃i∈A

|ϕ(x1, . . . , xi, . . . , xm) − ϕ(x1, . . . , x̃i, . . . , xm)| ≤ bi

for every 1 ≤ i ≤ m. Then, for every ε > 0,

Prob{ϕ(x1, . . . , xm) − Eϕ ≥ ε} ≤ exp


−

2ε2

m
i=1

b2i


.

The following inequality follows the characteristic of the least
square ranking loss.

Lemma 3. Assume that the node function φ(αi, x) ≤ κ < ∞ for the
randomly preselected αi and all x ∈ X, i ∈ {1, . . . , n}. The output
y ∈ [0,M] for M > 0. Then, for all f1, f2 ∈ BR, z, z ′

∈ Z, we have

|ℓ(f1, z, z ′) − ℓ(f2, z, z ′)| ≤ 4(M + 2κR)∥f1 − f2∥∞.

Proof. Based on the Cauchy–Schwarz inequality, we have

|f (x)| ≤ κ∥f ∥ℓ2 ≤ κR, ∀f ∈ BR, x ∈ X.

For any f1, f2 ∈ BR, there is

|ℓ(f1, z, z ′) − ℓ(f2, z, z ′)|

≤ (2|y − y′
| + |f1(x)| + |f1(x′)| + |f2(x)| + |f2(x′)|)

× (|f1(x) − f2(x)| + |f1(x′) − f2(x′)|)

≤ 4(M + 2κR)∥f1 − f2∥∞.

This completes the proof.

Now we present the uniform convergence analysis for f
∈ BR.
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Lemma 4. For any ε > 0, there holds

Probz∈Zm


sup
f∈BR

(E(f ) − E(f ∗) − (Ez(f ) − Ez(f ∗))) ≥ ε


≤ N

BR,

ε

16(M + 2κR)


exp


−

ε2m
1024(M + κR)4


.

Proof. Let z = {zi}mi=1 ∈ Zm and zk = (z1, . . . , zk−1, z ′

k, zk+1,
. . . , zm). Denoteϕ(z) = Ez(f )−Ez(f ∗), then Eϕ(z) = E(f )−E(f ∗).
Then, for any 1 ≤ k ≤ m and f ∈ BR, we have

|ϕ(z) − ϕ(zk)| ≤
2

m(m − 1)


j≠k


|ℓ(f , zk, zj) − ℓ(f , z ′

k, zj)|

+ |ℓ(f ∗, zk, zj) − ℓ(f ∗, z ′

k, zj)|


≤
4(M + 2κR)2 + 18M2

m
.

According to the McDiarmid inequality, for any ε > 0, we get

Probz∈Zm


Eϕ(z) − ϕ(z) ≥ ε


≤ exp


−

ε2m
256(M + κR)4


.

Now we use the technique in Cucker and Smale (2002) to obtain
the uniform convergence estimate. Let J = N (BR,

ε
16(M+2κR) ) and

fj, 1 ≤ j ≤ J , be the centers of disks Dj with radius ε
16(M+2κR) such

that BR ⊂ ∪
J
j=1 Dj. Note that, for all f ∈ Dj and z ∈ Zm,

|E(f ) − E(f ∗) − (Ez(f ) − Ez(f ∗))

− {E(fj) − E(f ∗) − (Ez(fj) − Ez(f ∗))}|

≤ 8(M + 2κR)∥f − fj∥∞ ≤
ε

2
.

Then,

sup
f∈Dj

(E(f ) − E(f ∗) − (Ez(f ) − Ez(f ∗))) ≥ ε

⇒ E(fj) − E(f ∗) − (Ez(fj) − Ez(f ∗)) ≥
ε

2
.

That is to say

Probz∈Zm


sup
f∈Dj


E(f ) − E(f ∗) − (Ez(f ) − Ez(f ∗))


≥ ε


(10)

≤ Probz∈Zm


E(fj) − E(f ∗) − (Ez(fj) − Ez(f ∗)) ≥

ε

2


≤ exp


−

ε2m
1024(M + κR)4


. (11)

Note that

Probz∈Zm


sup
f∈BR


E(f ) − E(f ∗) − (Ez(f ) − Ez(f ∗))


≥ ε


≤

J
j=1

Probz∈Zm


sup
f∈Dj


E(f ) − E(f ∗)

− (Ez(f ) − Ez(f ∗))


≥ ε

. (12)

The desired result is obtained by combining (11) and (12).

It is a position to present the main result on the generalization
bound.
Theorem 2. Assume φ(αi, x) ≤ κ < ∞ for the randomly prese-
lected αi and all x ∈ X, i ∈ {1, . . . , n}, there exists a constant C̃
independent of m, n such that

Ez(E(fz,λ) − E(f ∗))

≤ 32C̃M

1 + κλ−

1
2

2n(logm − log(n − 1))
m

+ inf
f∈Mn


E(f ) − E(f ∗) + λ∥f ∥2

ℓ2


.

Proof. From the definition of fz,λ in (4), we get that

∥fz,λ∥2
ℓ2

≤
Ez(0)

λ
≤

M2

λ
.

Hence, fz,λ ∈ BR with R =
M
√

λ
.

Based on Lemma 1 and Lemma 4, we get

Ez(S1) =

 t

0
Probz∈Zm{S1 ≥ ε}dε

+


∞

t
Probz∈Zm{S1 ≥ ε}dε

≤ t +


∞

t
exp


n log

64R(M + 2κR)
ε

−
ε2m

256(M + κR)4


dε

≤ t + exp

−

t2m
256(M + κR)4

  ∞

t

64R(M + 2κR)
ε

n
dε

≤ t + exp

−

t2m
256(M + κR)4

64R(M + 2κR)
mt

n tmn

n − 1
.

Choose

t = 16c(M + κR)2


n(logm − log(n − 1))
m

such that t ≥
64R(M+2κR)

m , where c is a constant independently of
m, n. Then

Ez(S1) ≤ 2t ≤ 32c(M + κR)2


n(logm − log(n − 1))
m

.

Now we estimate EzS2. There holds

Ez(S2) = Ez

Ez(fz,λ) − Ez(f ∗) + λ∥fz,λ∥2

ℓ2


= Ez inf

f∈Mn


Ez(f ) − Ez(f ∗) + λ∥f ∥2

ℓ2


≤ inf

f∈Mn


E(f ) − E(f ∗) + λ∥f ∥2

ℓ2


.

We complete the proof by combining the estimates of Ez(S1)
and Ez(S2) with Proposition 1.

From Theorem 2, we know that the generalization ability of (3)
depends on the hypothesis space Mn and the intrinsic ranking rule
f ∗. In essential, we just give the explicit convergence rate on the
sample error and leave the approximation error analysis for future
study. When the optimal ranking function can be approximated
by the functions in the ELM-based hypothesis space, we have
E(fz,λ) → E(f ∗) with order (

logm
m )

1
2 . This polynomial decay is

satisfactory to ranking and similarwith the convergence results for
kernel-based ranking, see, e.g., O(m−

1
2 ) (Agarwal & Niyogi, 2009),

O(m−
1
5 ) (Chen, 2012), O(m−

1
4 ) (Chen et al., 2013).
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The ELMRank is associated with the hypothesis space Mn
which is independent of training samples z. Hence, the ELMRank
has much lower computation complexity than the kernel-based
ranking algorithms (Agarwal et al., 2010; Agarwal & Niyogi, 2009;
Chen, 2012; Chen et al., 2013). That is to say the ELMRank inherits
the computation advantages of ELM and its implementation is
faster than the kernel-based regularized methods.

4. Experiments

In this section, the empirical performance of ELMRank is
verified on several benchmark datasets for the recommendation
task and drug discovery. The experimental results show ELMRank
can achieve competitive performance compared with several
state-of-the-art ranking algorithms.

4.1. Algorithm and parameter selection

From Theorem 1, we know that ELMRank can be implemented
easily through the linear system (7) and (8). The explicit compu-
tation steps of the ELMRank are summarized in Algorithm 1.

Algorithm 1 ELMRank
Require:

Training set z = {(xi, yi)}mi=1, activation function φ,
hidden node number n, ridge parameter C , and regularization
parameter λ > 0.

1: Assigning parameter α = (α1, . . . , αn)
T randomly and

generating matrix H .
2: Computing the matrices A and B defined in (5) and (6).
3: Solving the linear system Aβ = B by (8) to derive βz =

(βz,1, ..., βz,n) ∈ Rn.
4: return A ranking function

fz,λ(x) =

n
i=1

βz,iφ(αi, x).

In the experiments, we adopt the sigmoid function as the
nonlinear activation function. The hidden node number is set as
n = 100. All the hidden-node parameters {αi}

n
i=1 are randomly

generated with the uniform distribution.
The user-specified parameters are regularization parameter λ

and ridge parameter C , where the regularization parameter λ is
selected from {10−5, . . . , 101

} and C is chosen from the range
{21, . . . , 225

}. The optimal parameter values are chosen based on
10-fold cross validation. Average results of 50 trials for each fixed
ELM are reported in this paper.

Some remarks for the parameter selections are given as below.
In (3), λ∥f ∥2

ℓ2
is used to restrict the function f . In general, λ is a

small value such that the regularization part plays an auxiliary role
in choosing a feasible f compared with the empirical term Ẽz(f ).
The same selection for λ is also given in Agarwal et al. (2010). The
regularization parameter C is used in (8) to solve the linear system
of ELMRank. In solving the linear system, the ridge parameter 1/C
makes the solution more stable but introducing bias. So, the ridge
parameter 1/C should also be a small value while still maintaining
model stability. As we know, in the original ELM, 1/C is chosen in a
width range {2−25, . . . , 225

}. For our ELMRank, in the experiments,
we have found that better results are usually achieved at small
ridge parameter 1/C (usually smaller than 1). For simplicity, we
choose 1/C from the left half of the whole set, that is, C varies in
the range {21, . . . , 225

}.
Table 1
Comparison of MSD (mean and standard deviation).

Dataset MPRank SVRank ELMRank

MovieLens 20–40 2.01 ± 0.02 2.43 ± 0.13 1.98 ± 0.04
MovieLens 40–60 2.02 ± 0.06 2.36 ± 0.16 2.00 ± 0.04
MovieLens 60–80 2.07 ± 0.05 2.66 ± 0.09 1.96 ± 0.04
Jester 20–40 51.34 ± 2.90 55.00 ± 5.14 37.64 ± 1.37
Jester 40–60 46.77 ± 2.03 57.75 ± 5.14 38.98 ± 1.61
Jester 60–80 49.33 ± 3.11 56.06 ± 4.26 34.30 ± 1.21
Books 4.00 ± 3.12 3.64 ± 3.04 2.81 ± 3.44

4.2. Experiments on the recommendation task

The recommendation task aims to produce for a given user
a list of unseen movies/jokes/books ordered by the predicted
preference. The ELMRank is compared with MPRank (Cortes et al.,
2007), SVRank (Cortes et al., 2007) and RankBoost (Freund et al.,
2003).

4.2.1. Datasets and experimental settings
The MovieLens dataset contains 1,000,209 anonymous ratings

of 3883 movies made by 6040 MovieLens users, where rating
belongs to {1, . . . , 5} and not all movies are rated. The Jester
JokeRecommender Systemdataset contains 4.1Million continuous
ratings ranging from −10.00 to +10.00 to 100 jokes from 73,421
users. The book-crossing dataset contains 278,858 users and
1,149,780 ratings for 271,379 books.

For the MovieLens dataset, the reviewers are divided into
three groups (20–40 movies, 40–60 movies, and 60–80 movies)
according to their numbers of reviewed movies. The reviewers,
reviewed between 50 and 300 movies, are used for testing. For a
given test reviewer, we randomly select 300 reference reviewers
from one of the three groups and their rating scores are used to
form the input vectors, and use half of his ratedmovies for training
and the other for testing. The average performance is obtained
from 300 different test reviewers. The mean values and standard
deviations are derived after ten repeated experiments for each of
the three groups. For the Jester Joke Recommender System dataset,
its experiment procedure is similar to the MovieLens dataset.

For the book-crossing dataset, only those users who have
reviewed at least 200 books, and books with at least 10 reviews
are considered in our experiment. This gives us a dataset including
87 books and 130 reviewers. Then, each of the 130 reviewers is
selected by turn as a test reviewer, and the rest 129 reviewers are
considered as the input features. The mean values and standard
deviations are reported over these 130 leave-one-out experiments.

4.2.2. Experimental results
The prediction performance of ELMRank is evaluated by three

measures including the mean squared difference (MSD), Mean 1-
norm Difference (M1D), Pairwise Misranking Error (Cortes et al.,
2007). Let T = {(xi, yi)}m

′

i=1 be the test set and f be the prediction
function. It is worth noticing that MSD defined by

ẼT (f ) =
1
m′2

m′
i,j=1


yi − yj − (f (xi) − f (xj))

2
is the empirical risk on the test set and reflects the generalization
performance of f . In essential, our theoretical analysis in Theorem2
reflects the generalization performance according to MSD. The
other measures of ranking performance are closely related with
MSD although they have different characteristics.

According to the above measures, we report the experimental
results in Tables 1–3 respectively. The results of MPRank, SVRank
and RankBoost come from Cortes et al. (2007).
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Fig. 1. The ELMRank performance vs. the number of training samples on DHFR (a) and COX2 (b).
Table 2
Comparison of M1D (mean and standard deviation).

Dataset MPRank SVRank ELMRank

MovieLens 20–40 1.04 ± 0.05 1.17 ± 0.03 1.03 ± 0.02
MovieLens 40–60 1.04 ± 0.02 1.15 ± 0.07 1.03 ± 0.01
MovieLens 60–80 1.06 ± 0.01 1.24 ± 0.02 1.07 ± 0.01
Jester 20–40 5.08 ± 0.15 5.40 ± 0.20 4.57 ± 0.09
Jester 40–60 4.98 ± 0.13 5.27 ± 0.20 4.63 ± 0.09
Jester 60–80 4.88 ± 0.14 5.25 ± 0.19 4.37 ± 0.08
Books 1.38 ± 0.60 1.32 ± 0.56 0.97 ± 0.77

Table 3
Comparison of pairwise misrankings (mean and standard deviation).

Dataset MPRank RankBoost ELMRank

MovieLens 40–60 47.1% ± 0.5% 47.6% ± 0.7% 45.5%±0.4%
MovieLens 60–80 44.2% ± 0.5% 46.3% ± 1.1% 43.6%±0.5%
Jester 20–40 41.0% ± 0.6% 47.9% ± 0.8% 41.3%± 0.6%
Jester 40–60 40.8% ± 0.6% 43.2% ± 0.5% 39.3%±0.5%
Jester 60–80 37.1% ± 0.6% 41.7% ± 0.8% 37.5%± 0.5%

Wecan observe that ELMRank outperforms other algorithms on
almost all datasets according to the measures of MSD and M1D,
which verifies the effectiveness of ELMRank. For the percentage
of pairwise misrankings, ELMRank has the best performance on
MovieLens and loses to the MPRank on Jester Jokes. Note that
ELMRank in (3) is designed to search a function in the ELM-based
hypothesis space to minimize the least square ranking loss. In
theory, it is a reason to induce the weak performance on the
pairwise misranking loss. In fact, the selection of convex loss
depends on the characteristics of ranking tasks and the hypothesis
spaces. Because our main concern in this work is to investigate
the generalization performance of ELMRank for the least square
ranking, we leave the selection of different ranking loss functions
for future study.

4.3. Experiments on QSAR analysis

We evaluate the prediction performance of ELMRank on
two Quantitative Structure–Activity Relationship (QSAR) datasets,
including inhibitors of dihydrofolate reductase (DHFR) and
cyclooxygenase-2 (COX2). Thepredictionperformance of ELMRank
is compared with the RankSVM (Agarwal et al., 2010; Joachims,
2002) and Support Vector Regression (SVR)-based ranking (Agar-
wal et al., 2010; Vapnik, 1998).
4.3.1. Datasets and experimental settings
The DHFR inhibitor dataset contains 361 compounds, with

pIC50 values ranging from 3.3 to 9.8; the COX2 inhibitor dataset
contains 282 compounds, with pIC50 values ranging from 4.0 to
9.0. In the original DHFR dataset, 237 out of 361 compounds are
selected as the training set and the rest compounds are considered
as the test set. For the COX2 dataset, 188 of 292 compounds form
the training set and the remaining compounds are used as the test
set. In these datasets, each compound is represented by the 2.5D
chemical descriptors (Sutherland, O’Brien, & Weaver, 2004). See
Sutherland et al. (2004) and the references therein for details.

70 real-valued descriptors are contained in the DHFR inhibitor
dataset and 74 real-valued descriptors are contained in the COX2
inhibitor dataset, where each of these descriptors is scaled to lie
between 0 and 1. The experimental set-ups here follow those in
Agarwal et al. (2010).

4.3.2. Experimental results
To better describe the performance of ELMRank, we investi-

gate different measures including the ranking error, correlation,
Kendall’s τ ranking correlation coefficient, Spearman’s ρ rank cor-
relation coefficient, and normalized discounted cumulative gain
(NDCG). The detail definitions of these measures can be found in
Section 3.5 of Agarwal et al. (2010).

According to these measures, we report the results of ELMRank
in Table 4. The results of RankSVM and SVR come from Agarwal
et al. (2010).

From these experimental results, we can see that ELMRank has
the best performance. These results further verify the effectiveness
of ELMRank. We also investigate the relation between the ELM-
Rank’s performance and the number of training samples in Fig. 1.
Ten samples are selected as the training set randomly from the
original training dataset. Thenwe test it on the original test dataset.
All performance evaluations are recorded. We train ELMRank by
adding 10 training samples each time. The reported results are
the average of ten-time evaluations with randomly chosen train-
ing samples. It can be seen from Fig. 1 that ELMRank shows the
consistent performance under different training sample sizes.

Note that MSD is the empirical version of the generalization
error E(f ). To better verify the theoretical analysis in Theorem 2,
we compare the prediction performance between ELMRank and
the least square support vector regression (LSSVR) (Suykens,
Van Gestel, De Brabanter, De Moor, & Vandewalle, 2002) in
terms of MSD under different numbers of training samples. The
experiment results are presented in Fig. 2. It can be clearly seen
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Table 4
QSAR ranking results on the DHFR and COX2 dataset.

DHFR COX2
SVR RankSVM ELMRank SVR RankSVM ELMRank

Ranking error 0.1837 0.1726 0.1699 0.3138 0.3173 0.3010
Correlation 0.7519 0.7618 0.7567 0.5836 0.5703 0.6062
Kendall’s τ 0.5571 0.5747 0.5762 0.4351 0.4346 0.4390
Spearman’s ρ 0.7752 0.7758 0.7784 0.6100 0.6174 0.6287
NDCG 0.8540 0.8632 0.8642 0.9399 0.9231 0.9225
a b

Fig. 2. ELMRank vs. LSSVR w.r.t. MSD on (a) DHFR and (b) COX2.
that the test errors decrease rapidly with the increasing number
of training samples. This is consistent with the theoretical results
in Theorem 2. Moreover, the superiority of ELMRank over LSSVR is
consistent when enough training samples are available.

5. Conclusion

This paper investigated the convergence performance of
ELMRank. In theory, we established the generalization bound
of ELMRank and showed that satisfactory learning rates can be
obtained under mild conditions. In applications, we evaluated the
prediction performance of ELMRank on the public datasets and
demonstrated its competitive performance compared with state-
of-the-art algorithms. Along the line of the present work, further
studies may consider to establish the generalization analysis of
ELMRank with dependent samples (Zou, Li, & Xu, 2009; Zou, Li, Xu,
Luo, & Tang, 2013) and with different regularization terms (Chen,
Pan, Li, & Tang, 2013; Li, Chen, & Li, 2012; Tong, Chen, & Yang, 2012;
Xu, Chang, Xu, & Zhang, 2012).
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